extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C8).1C23 = Q32⋊C4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).1C2^3 | 128,912 |
(C2×C8).2C23 = D16⋊C4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).2C2^3 | 128,913 |
(C2×C8).3C23 = D8⋊D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).3C2^3 | 128,922 |
(C2×C8).4C23 = D8.D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).4C2^3 | 128,923 |
(C2×C8).5C23 = M5(2).C22 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).5C2^3 | 128,970 |
(C2×C8).6C23 = C23.10SD16 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).6C2^3 | 128,971 |
(C2×C8).7C23 = C24.178D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).7C2^3 | 128,1736 |
(C2×C8).8C23 = C24.104D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).8C2^3 | 128,1737 |
(C2×C8).9C23 = C24.105D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).9C2^3 | 128,1738 |
(C2×C8).10C23 = C24.106D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).10C2^3 | 128,1739 |
(C2×C8).11C23 = C42.211D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).11C2^3 | 128,1768 |
(C2×C8).12C23 = C42.212D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).12C2^3 | 128,1769 |
(C2×C8).13C23 = C42.444D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).13C2^3 | 128,1770 |
(C2×C8).14C23 = C42.445D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).14C2^3 | 128,1771 |
(C2×C8).15C23 = C42.446D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).15C2^3 | 128,1772 |
(C2×C8).16C23 = C42.14C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).16C2^3 | 128,1773 |
(C2×C8).17C23 = C42.15C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).17C2^3 | 128,1774 |
(C2×C8).18C23 = C42.16C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).18C2^3 | 128,1775 |
(C2×C8).19C23 = C42.17C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).19C2^3 | 128,1776 |
(C2×C8).20C23 = C42.18C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).20C2^3 | 128,1777 |
(C2×C8).21C23 = C42.19C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).21C2^3 | 128,1778 |
(C2×C8).22C23 = M4(2).37D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).22C2^3 | 128,1800 |
(C2×C8).23C23 = M4(2).38D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).23C2^3 | 128,1801 |
(C2×C8).24C23 = C42.219D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).24C2^3 | 128,1809 |
(C2×C8).25C23 = C42.220D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).25C2^3 | 128,1810 |
(C2×C8).26C23 = C42.448D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).26C2^3 | 128,1811 |
(C2×C8).27C23 = C42.449D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).27C2^3 | 128,1812 |
(C2×C8).28C23 = C42.20C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).28C2^3 | 128,1813 |
(C2×C8).29C23 = C42.21C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).29C2^3 | 128,1814 |
(C2×C8).30C23 = C42.22C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).30C2^3 | 128,1815 |
(C2×C8).31C23 = C42.23C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).31C2^3 | 128,1816 |
(C2×C8).32C23 = C24.183D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).32C2^3 | 128,1824 |
(C2×C8).33C23 = C24.116D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).33C2^3 | 128,1825 |
(C2×C8).34C23 = C24.117D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).34C2^3 | 128,1826 |
(C2×C8).35C23 = C24.118D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).35C2^3 | 128,1827 |
(C2×C8).36C23 = C42.227D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).36C2^3 | 128,1841 |
(C2×C8).37C23 = C42.228D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).37C2^3 | 128,1842 |
(C2×C8).38C23 = C42.229D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).38C2^3 | 128,1843 |
(C2×C8).39C23 = C42.230D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).39C2^3 | 128,1844 |
(C2×C8).40C23 = C42.231D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).40C2^3 | 128,1845 |
(C2×C8).41C23 = C42.232D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).41C2^3 | 128,1846 |
(C2×C8).42C23 = C42.233D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).42C2^3 | 128,1847 |
(C2×C8).43C23 = C42.234D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).43C2^3 | 128,1848 |
(C2×C8).44C23 = C42.235D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).44C2^3 | 128,1849 |
(C2×C8).45C23 = C42.352C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).45C2^3 | 128,1850 |
(C2×C8).46C23 = C42.353C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).46C2^3 | 128,1851 |
(C2×C8).47C23 = C42.354C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).47C2^3 | 128,1852 |
(C2×C8).48C23 = C42.355C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).48C2^3 | 128,1853 |
(C2×C8).49C23 = C42.356C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).49C2^3 | 128,1854 |
(C2×C8).50C23 = C42.357C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).50C2^3 | 128,1855 |
(C2×C8).51C23 = C42.358C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).51C2^3 | 128,1856 |
(C2×C8).52C23 = C42.359C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).52C2^3 | 128,1857 |
(C2×C8).53C23 = C42.360C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).53C2^3 | 128,1858 |
(C2×C8).54C23 = C42.361C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).54C2^3 | 128,1859 |
(C2×C8).55C23 = C24.125D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).55C2^3 | 128,1924 |
(C2×C8).56C23 = C24.126D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).56C2^3 | 128,1925 |
(C2×C8).57C23 = C24.127D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).57C2^3 | 128,1926 |
(C2×C8).58C23 = C24.128D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).58C2^3 | 128,1927 |
(C2×C8).59C23 = C24.129D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).59C2^3 | 128,1928 |
(C2×C8).60C23 = C24.130D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).60C2^3 | 128,1929 |
(C2×C8).61C23 = C42.271D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).61C2^3 | 128,1945 |
(C2×C8).62C23 = C42.272D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).62C2^3 | 128,1946 |
(C2×C8).63C23 = C42.273D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).63C2^3 | 128,1947 |
(C2×C8).64C23 = C42.274D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).64C2^3 | 128,1948 |
(C2×C8).65C23 = C42.275D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).65C2^3 | 128,1949 |
(C2×C8).66C23 = C42.276D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).66C2^3 | 128,1950 |
(C2×C8).67C23 = C42.277D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).67C2^3 | 128,1951 |
(C2×C8).68C23 = C42.286D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).68C2^3 | 128,1966 |
(C2×C8).69C23 = C42.287D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).69C2^3 | 128,1967 |
(C2×C8).70C23 = C42.288D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).70C2^3 | 128,1968 |
(C2×C8).71C23 = C42.289D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).71C2^3 | 128,1969 |
(C2×C8).72C23 = C42.290D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).72C2^3 | 128,1970 |
(C2×C8).73C23 = C42.291D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).73C2^3 | 128,1971 |
(C2×C8).74C23 = C42.292D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).74C2^3 | 128,1972 |
(C2×C8).75C23 = C42.299D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).75C2^3 | 128,1983 |
(C2×C8).76C23 = C42.300D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).76C2^3 | 128,1984 |
(C2×C8).77C23 = C42.301D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).77C2^3 | 128,1985 |
(C2×C8).78C23 = C42.302D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).78C2^3 | 128,1986 |
(C2×C8).79C23 = C42.303D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).79C2^3 | 128,1987 |
(C2×C8).80C23 = C42.304D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).80C2^3 | 128,1988 |
(C2×C8).81C23 = D8⋊9D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).81C2^3 | 128,1996 |
(C2×C8).82C23 = SD16⋊D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).82C2^3 | 128,1997 |
(C2×C8).83C23 = SD16⋊6D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).83C2^3 | 128,1998 |
(C2×C8).84C23 = D8⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).84C2^3 | 128,1999 |
(C2×C8).85C23 = SD16⋊7D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).85C2^3 | 128,2000 |
(C2×C8).86C23 = SD16⋊8D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).86C2^3 | 128,2001 |
(C2×C8).87C23 = Q16⋊9D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).87C2^3 | 128,2002 |
(C2×C8).88C23 = Q16⋊10D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).88C2^3 | 128,2003 |
(C2×C8).89C23 = D8⋊5D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).89C2^3 | 128,2005 |
(C2×C8).90C23 = SD16⋊2D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).90C2^3 | 128,2007 |
(C2×C8).91C23 = Q16⋊4D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).91C2^3 | 128,2009 |
(C2×C8).92C23 = D8⋊11D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 16 | 8+ | (C2xC8).92C2^3 | 128,2020 |
(C2×C8).93C23 = D8.13D4 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).93C2^3 | 128,2021 |
(C2×C8).94C23 = C42.41C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).94C2^3 | 128,2038 |
(C2×C8).95C23 = C42.43C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).95C2^3 | 128,2040 |
(C2×C8).96C23 = C42.45C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).96C2^3 | 128,2042 |
(C2×C8).97C23 = C42.47C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).97C2^3 | 128,2044 |
(C2×C8).98C23 = C42.49C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).98C2^3 | 128,2046 |
(C2×C8).99C23 = C42.51C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).99C2^3 | 128,2048 |
(C2×C8).100C23 = C42.53C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).100C2^3 | 128,2050 |
(C2×C8).101C23 = C42.55C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).101C2^3 | 128,2052 |
(C2×C8).102C23 = C42.471C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).102C2^3 | 128,2054 |
(C2×C8).103C23 = C42.472C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | | (C2xC8).103C2^3 | 128,2055 |
(C2×C8).104C23 = C42.475C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).104C2^3 | 128,2058 |
(C2×C8).105C23 = C42.476C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).105C2^3 | 128,2059 |
(C2×C8).106C23 = C42.61C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).106C2^3 | 128,2079 |
(C2×C8).107C23 = C42.62C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).107C2^3 | 128,2080 |
(C2×C8).108C23 = C42.63C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).108C2^3 | 128,2081 |
(C2×C8).109C23 = C42.64C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).109C2^3 | 128,2082 |
(C2×C8).110C23 = C42.494C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).110C2^3 | 128,2085 |
(C2×C8).111C23 = C42.495C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).111C2^3 | 128,2086 |
(C2×C8).112C23 = C42.497C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).112C2^3 | 128,2088 |
(C2×C8).113C23 = C42.498C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).113C2^3 | 128,2089 |
(C2×C8).114C23 = C42.507C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).114C2^3 | 128,2098 |
(C2×C8).115C23 = C42.508C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).115C2^3 | 128,2099 |
(C2×C8).116C23 = C42.509C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).116C2^3 | 128,2100 |
(C2×C8).117C23 = C42.510C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).117C2^3 | 128,2101 |
(C2×C8).118C23 = C42.513C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).118C2^3 | 128,2104 |
(C2×C8).119C23 = C42.514C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).119C2^3 | 128,2105 |
(C2×C8).120C23 = C42.515C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 128 | | (C2xC8).120C2^3 | 128,2106 |
(C2×C8).121C23 = C42.516C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).121C2^3 | 128,2107 |
(C2×C8).122C23 = C42.531C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).122C2^3 | 128,2133 |
(C2×C8).123C23 = C42.532C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).123C2^3 | 128,2134 |
(C2×C8).124C23 = C42.533C23 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 64 | | (C2xC8).124C2^3 | 128,2135 |
(C2×C8).125C23 = C4.C25 | φ: C23/C1 → C23 ⊆ Aut C2×C8 | 32 | 8- | (C2xC8).125C2^3 | 128,2318 |
(C2×C8).126C23 = C2×C22⋊Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).126C2^3 | 128,1731 |
(C2×C8).127C23 = C2×D4⋊D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).127C2^3 | 128,1732 |
(C2×C8).128C23 = C24.103D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).128C2^3 | 128,1734 |
(C2×C8).129C23 = C4○D4⋊D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).129C2^3 | 128,1740 |
(C2×C8).130C23 = Q8.(C2×D4) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).130C2^3 | 128,1743 |
(C2×C8).131C23 = (C2×Q8)⋊17D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).131C2^3 | 128,1745 |
(C2×C8).132C23 = C2×C4⋊D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).132C2^3 | 128,1761 |
(C2×C8).133C23 = C2×C4⋊2Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).133C2^3 | 128,1765 |
(C2×C8).134C23 = C2×Q8.D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).134C2^3 | 128,1766 |
(C2×C8).135C23 = C42.443D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).135C2^3 | 128,1767 |
(C2×C8).136C23 = C2×D4⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).136C2^3 | 128,1802 |
(C2×C8).137C23 = C2×C4.Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).137C2^3 | 128,1806 |
(C2×C8).138C23 = C2×Q8.Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).138C2^3 | 128,1807 |
(C2×C8).139C23 = C42.447D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).139C2^3 | 128,1808 |
(C2×C8).140C23 = C2×C22.D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).140C2^3 | 128,1817 |
(C2×C8).141C23 = C2×C23.19D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).141C2^3 | 128,1819 |
(C2×C8).142C23 = C2×C23.48D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).142C2^3 | 128,1822 |
(C2×C8).143C23 = C24.115D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).143C2^3 | 128,1823 |
(C2×C8).144C23 = (C2×D4).301D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).144C2^3 | 128,1828 |
(C2×C8).145C23 = (C2×D4).303D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).145C2^3 | 128,1830 |
(C2×C8).146C23 = C42.221D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).146C2^3 | 128,1832 |
(C2×C8).147C23 = C42.224D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).147C2^3 | 128,1836 |
(C2×C8).148C23 = C42.225D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).148C2^3 | 128,1837 |
(C2×C8).149C23 = C42.450D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).149C2^3 | 128,1838 |
(C2×C8).150C23 = C23⋊3D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).150C2^3 | 128,1918 |
(C2×C8).151C23 = C23⋊3Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).151C2^3 | 128,1921 |
(C2×C8).152C23 = C24.123D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).152C2^3 | 128,1922 |
(C2×C8).153C23 = C24.124D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).153C2^3 | 128,1923 |
(C2×C8).154C23 = C4.2+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).154C2^3 | 128,1930 |
(C2×C8).155C23 = C4.142+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).155C2^3 | 128,1931 |
(C2×C8).156C23 = C4.172+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).156C2^3 | 128,1934 |
(C2×C8).157C23 = C4.182+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).157C2^3 | 128,1935 |
(C2×C8).158C23 = C42.263D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).158C2^3 | 128,1937 |
(C2×C8).159C23 = C42.265D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).159C2^3 | 128,1939 |
(C2×C8).160C23 = C42.267D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).160C2^3 | 128,1941 |
(C2×C8).161C23 = C42.406C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).161C2^3 | 128,1952 |
(C2×C8).162C23 = C42.409C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).162C2^3 | 128,1955 |
(C2×C8).163C23 = C42.410C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).163C2^3 | 128,1956 |
(C2×C8).164C23 = C42.411C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).164C2^3 | 128,1957 |
(C2×C8).165C23 = C42.278D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).165C2^3 | 128,1958 |
(C2×C8).166C23 = C42.280D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).166C2^3 | 128,1960 |
(C2×C8).167C23 = C42.282D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).167C2^3 | 128,1962 |
(C2×C8).168C23 = C42.423C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).168C2^3 | 128,1973 |
(C2×C8).169C23 = C42.425C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).169C2^3 | 128,1975 |
(C2×C8).170C23 = C42.293D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).170C2^3 | 128,1977 |
(C2×C8).171C23 = C42.296D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).171C2^3 | 128,1980 |
(C2×C8).172C23 = C42.297D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).172C2^3 | 128,1981 |
(C2×C8).173C23 = C42.298D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).173C2^3 | 128,1982 |
(C2×C8).174C23 = C4.2- 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).174C2^3 | 128,1989 |
(C2×C8).175C23 = C42.26C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).175C2^3 | 128,1991 |
(C2×C8).176C23 = C42.28C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).176C2^3 | 128,1993 |
(C2×C8).177C23 = C42.29C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).177C2^3 | 128,1994 |
(C2×C8).178C23 = D4×D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).178C2^3 | 128,2011 |
(C2×C8).179C23 = SD16⋊10D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).179C2^3 | 128,2014 |
(C2×C8).180C23 = D4×Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).180C2^3 | 128,2018 |
(C2×C8).181C23 = D4⋊4D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).181C2^3 | 128,2026 |
(C2×C8).182C23 = C42.462C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).182C2^3 | 128,2029 |
(C2×C8).183C23 = D4⋊5Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).183C2^3 | 128,2031 |
(C2×C8).184C23 = C42.465C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).184C2^3 | 128,2032 |
(C2×C8).185C23 = C42.468C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).185C2^3 | 128,2035 |
(C2×C8).186C23 = C42.469C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).186C2^3 | 128,2036 |
(C2×C8).187C23 = C42.44C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).187C2^3 | 128,2041 |
(C2×C8).188C23 = C42.48C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).188C2^3 | 128,2045 |
(C2×C8).189C23 = C42.50C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).189C2^3 | 128,2047 |
(C2×C8).190C23 = C42.54C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).190C2^3 | 128,2051 |
(C2×C8).191C23 = C42.474C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).191C2^3 | 128,2057 |
(C2×C8).192C23 = C42.477C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).192C2^3 | 128,2060 |
(C2×C8).193C23 = C42.479C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).193C2^3 | 128,2062 |
(C2×C8).194C23 = C42.482C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).194C2^3 | 128,2065 |
(C2×C8).195C23 = D4⋊5D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).195C2^3 | 128,2066 |
(C2×C8).196C23 = C42.485C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).196C2^3 | 128,2068 |
(C2×C8).197C23 = D4⋊6Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).197C2^3 | 128,2070 |
(C2×C8).198C23 = C42.488C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).198C2^3 | 128,2071 |
(C2×C8).199C23 = C42.489C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).199C2^3 | 128,2072 |
(C2×C8).200C23 = C42.57C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).200C2^3 | 128,2075 |
(C2×C8).201C23 = C42.60C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).201C2^3 | 128,2078 |
(C2×C8).202C23 = C42.493C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).202C2^3 | 128,2084 |
(C2×C8).203C23 = C42.496C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).203C2^3 | 128,2087 |
(C2×C8).204C23 = Q8⋊4D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).204C2^3 | 128,2090 |
(C2×C8).205C23 = C42.502C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).205C2^3 | 128,2093 |
(C2×C8).206C23 = Q8⋊5Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).206C2^3 | 128,2095 |
(C2×C8).207C23 = C42.505C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).207C2^3 | 128,2096 |
(C2×C8).208C23 = C42.511C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).208C2^3 | 128,2102 |
(C2×C8).209C23 = C42.518C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).209C2^3 | 128,2109 |
(C2×C8).210C23 = Q8×D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).210C2^3 | 128,2110 |
(C2×C8).211C23 = D8⋊6Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).211C2^3 | 128,2112 |
(C2×C8).212C23 = Q8×Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).212C2^3 | 128,2114 |
(C2×C8).213C23 = Q16⋊6Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).213C2^3 | 128,2115 |
(C2×C8).214C23 = SD16⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).214C2^3 | 128,2117 |
(C2×C8).215C23 = SD16⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).215C2^3 | 128,2118 |
(C2×C8).216C23 = D8⋊5Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).216C2^3 | 128,2121 |
(C2×C8).217C23 = Q16⋊5Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).217C2^3 | 128,2122 |
(C2×C8).218C23 = Q8⋊5D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).218C2^3 | 128,2123 |
(C2×C8).219C23 = C42.527C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).219C2^3 | 128,2125 |
(C2×C8).220C23 = Q8⋊6Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).220C2^3 | 128,2127 |
(C2×C8).221C23 = C42.530C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).221C2^3 | 128,2128 |
(C2×C8).222C23 = C42.73C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).222C2^3 | 128,2130 |
(C2×C8).223C23 = C42.74C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).223C2^3 | 128,2131 |
(C2×C8).224C23 = C2×D8⋊2C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).224C2^3 | 128,876 |
(C2×C8).225C23 = C23.13D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).225C2^3 | 128,877 |
(C2×C8).226C23 = C2×M5(2)⋊C2 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).226C2^3 | 128,878 |
(C2×C8).227C23 = C2×C8.17D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).227C2^3 | 128,879 |
(C2×C8).228C23 = C23.21SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).228C2^3 | 128,880 |
(C2×C8).229C23 = C2×C8.Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).229C2^3 | 128,886 |
(C2×C8).230C23 = M5(2)⋊3C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).230C2^3 | 128,887 |
(C2×C8).231C23 = Q16.10D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4+ | (C2xC8).231C2^3 | 128,924 |
(C2×C8).232C23 = Q16.D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).232C2^3 | 128,925 |
(C2×C8).233C23 = D8.3D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).233C2^3 | 128,926 |
(C2×C8).234C23 = D8.12D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | 4- | (C2xC8).234C2^3 | 128,927 |
(C2×C8).235C23 = C8.3D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).235C2^3 | 128,944 |
(C2×C8).236C23 = D8⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 16 | 4+ | (C2xC8).236C2^3 | 128,945 |
(C2×C8).237C23 = C8.5D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4- | (C2xC8).237C2^3 | 128,946 |
(C2×C8).238C23 = D4.3D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4+ | (C2xC8).238C2^3 | 128,953 |
(C2×C8).239C23 = D4.4D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | 4- | (C2xC8).239C2^3 | 128,954 |
(C2×C8).240C23 = D4.5D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).240C2^3 | 128,955 |
(C2×C8).241C23 = D8⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).241C2^3 | 128,962 |
(C2×C8).242C23 = D8.2Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).242C2^3 | 128,963 |
(C2×C8).243C23 = C2×M4(2)⋊C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).243C2^3 | 128,1642 |
(C2×C8).244C23 = C24.100D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).244C2^3 | 128,1643 |
(C2×C8).245C23 = C2×M4(2).C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).245C2^3 | 128,1647 |
(C2×C8).246C23 = C2×C8.26D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).246C2^3 | 128,1686 |
(C2×C8).247C23 = C2×C8⋊D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).247C2^3 | 128,1783 |
(C2×C8).248C23 = C2×C8⋊2D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).248C2^3 | 128,1784 |
(C2×C8).249C23 = C2×C8.D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).249C2^3 | 128,1785 |
(C2×C8).250C23 = C24.110D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).250C2^3 | 128,1786 |
(C2×C8).251C23 = M4(2)⋊14D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).251C2^3 | 128,1787 |
(C2×C8).252C23 = M4(2)⋊15D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).252C2^3 | 128,1788 |
(C2×C8).253C23 = (C2×C8)⋊11D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).253C2^3 | 128,1789 |
(C2×C8).254C23 = (C2×C8)⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).254C2^3 | 128,1790 |
(C2×C8).255C23 = C8.D4⋊C2 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).255C2^3 | 128,1791 |
(C2×C8).256C23 = (C2×C8)⋊13D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).256C2^3 | 128,1792 |
(C2×C8).257C23 = (C2×C8)⋊14D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).257C2^3 | 128,1793 |
(C2×C8).258C23 = M4(2)⋊16D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).258C2^3 | 128,1794 |
(C2×C8).259C23 = M4(2)⋊17D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).259C2^3 | 128,1795 |
(C2×C8).260C23 = C2×D4.3D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).260C2^3 | 128,1796 |
(C2×C8).261C23 = C2×D4.4D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).261C2^3 | 128,1797 |
(C2×C8).262C23 = C2×D4.5D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).262C2^3 | 128,1798 |
(C2×C8).263C23 = M4(2).10C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).263C2^3 | 128,1799 |
(C2×C8).264C23 = C2×C8⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).264C2^3 | 128,1880 |
(C2×C8).265C23 = C2×C8.2D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).265C2^3 | 128,1881 |
(C2×C8).266C23 = C42.247D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).266C2^3 | 128,1882 |
(C2×C8).267C23 = M4(2)⋊7D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).267C2^3 | 128,1883 |
(C2×C8).268C23 = M4(2)⋊8D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).268C2^3 | 128,1884 |
(C2×C8).269C23 = M4(2)⋊9D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).269C2^3 | 128,1885 |
(C2×C8).270C23 = C2×C8⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).270C2^3 | 128,1893 |
(C2×C8).271C23 = C42.252D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).271C2^3 | 128,1894 |
(C2×C8).272C23 = M4(2)⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).272C2^3 | 128,1895 |
(C2×C8).273C23 = M4(2)⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).273C2^3 | 128,1896 |
(C2×C8).274C23 = M4(2)⋊5Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).274C2^3 | 128,1897 |
(C2×C8).275C23 = M4(2)⋊6Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).275C2^3 | 128,1898 |
(C2×C8).276C23 = C42.255D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).276C2^3 | 128,1903 |
(C2×C8).277C23 = C42.256D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).277C2^3 | 128,1904 |
(C2×C8).278C23 = C42.390C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).278C2^3 | 128,1910 |
(C2×C8).279C23 = C42.391C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).279C2^3 | 128,1911 |
(C2×C8).280C23 = C42.257D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).280C2^3 | 128,1912 |
(C2×C8).281C23 = C42.258D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).281C2^3 | 128,1913 |
(C2×C8).282C23 = C42.260D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).282C2^3 | 128,1915 |
(C2×C8).283C23 = D8⋊4D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).283C2^3 | 128,2004 |
(C2×C8).284C23 = SD16⋊1D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).284C2^3 | 128,2006 |
(C2×C8).285C23 = SD16⋊3D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).285C2^3 | 128,2008 |
(C2×C8).286C23 = Q16⋊5D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).286C2^3 | 128,2010 |
(C2×C8).287C23 = D8○SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).287C2^3 | 128,2022 |
(C2×C8).288C23 = D8⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).288C2^3 | 128,2023 |
(C2×C8).289C23 = D8○D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 16 | 4+ | (C2xC8).289C2^3 | 128,2024 |
(C2×C8).290C23 = D8○Q16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4- | (C2xC8).290C2^3 | 128,2025 |
(C2×C8).291C23 = C2×C16⋊C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).291C2^3 | 128,2144 |
(C2×C8).292C23 = C2×Q32⋊C2 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).292C2^3 | 128,2145 |
(C2×C8).293C23 = D16⋊C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).293C2^3 | 128,2146 |
(C2×C8).294C23 = D4○D16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4+ | (C2xC8).294C2^3 | 128,2147 |
(C2×C8).295C23 = D4○SD32 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).295C2^3 | 128,2148 |
(C2×C8).296C23 = Q8○D16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | 4- | (C2xC8).296C2^3 | 128,2149 |
(C2×C8).297C23 = C22×C8.C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).297C2^3 | 128,2311 |
(C2×C8).298C23 = C2×Q8⋊D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).298C2^3 | 128,1730 |
(C2×C8).299C23 = C2×D4.7D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).299C2^3 | 128,1733 |
(C2×C8).300C23 = D4.(C2×D4) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).300C2^3 | 128,1741 |
(C2×C8).301C23 = (C2×Q8)⋊16D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).301C2^3 | 128,1742 |
(C2×C8).302C23 = (C2×D4)⋊21D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).302C2^3 | 128,1744 |
(C2×C8).303C23 = C2×D4.D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).303C2^3 | 128,1762 |
(C2×C8).304C23 = C2×D4.2D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).304C2^3 | 128,1763 |
(C2×C8).305C23 = C2×C4⋊SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).305C2^3 | 128,1764 |
(C2×C8).306C23 = C2×D4⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).306C2^3 | 128,1803 |
(C2×C8).307C23 = C2×D4.Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).307C2^3 | 128,1804 |
(C2×C8).308C23 = C2×Q8⋊Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).308C2^3 | 128,1805 |
(C2×C8).309C23 = C2×C23.47D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).309C2^3 | 128,1818 |
(C2×C8).310C23 = C2×C23.20D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).310C2^3 | 128,1820 |
(C2×C8).311C23 = C2×C23.46D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).311C2^3 | 128,1821 |
(C2×C8).312C23 = (C2×D4).302D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).312C2^3 | 128,1829 |
(C2×C8).313C23 = (C2×D4).304D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).313C2^3 | 128,1831 |
(C2×C8).314C23 = C42.222D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).314C2^3 | 128,1833 |
(C2×C8).315C23 = C42.384D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).315C2^3 | 128,1834 |
(C2×C8).316C23 = C42.223D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).316C2^3 | 128,1835 |
(C2×C8).317C23 = C42.451D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).317C2^3 | 128,1839 |
(C2×C8).318C23 = C42.226D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).318C2^3 | 128,1840 |
(C2×C8).319C23 = C23⋊4SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).319C2^3 | 128,1919 |
(C2×C8).320C23 = C24.121D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).320C2^3 | 128,1920 |
(C2×C8).321C23 = C4.152+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).321C2^3 | 128,1932 |
(C2×C8).322C23 = C4.162+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).322C2^3 | 128,1933 |
(C2×C8).323C23 = C4.192+ 1+4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).323C2^3 | 128,1936 |
(C2×C8).324C23 = C42.264D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).324C2^3 | 128,1938 |
(C2×C8).325C23 = C42.266D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).325C2^3 | 128,1940 |
(C2×C8).326C23 = C42.268D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).326C2^3 | 128,1942 |
(C2×C8).327C23 = C42.269D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).327C2^3 | 128,1943 |
(C2×C8).328C23 = C42.270D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).328C2^3 | 128,1944 |
(C2×C8).329C23 = C42.407C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).329C2^3 | 128,1953 |
(C2×C8).330C23 = C42.408C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).330C2^3 | 128,1954 |
(C2×C8).331C23 = C42.279D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).331C2^3 | 128,1959 |
(C2×C8).332C23 = C42.281D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).332C2^3 | 128,1961 |
(C2×C8).333C23 = C42.283D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).333C2^3 | 128,1963 |
(C2×C8).334C23 = C42.284D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).334C2^3 | 128,1964 |
(C2×C8).335C23 = C42.285D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).335C2^3 | 128,1965 |
(C2×C8).336C23 = C42.424C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).336C2^3 | 128,1974 |
(C2×C8).337C23 = C42.426C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).337C2^3 | 128,1976 |
(C2×C8).338C23 = C42.294D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).338C2^3 | 128,1978 |
(C2×C8).339C23 = C42.295D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).339C2^3 | 128,1979 |
(C2×C8).340C23 = C42.25C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).340C2^3 | 128,1990 |
(C2×C8).341C23 = C42.27C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).341C2^3 | 128,1992 |
(C2×C8).342C23 = C42.30C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).342C2^3 | 128,1995 |
(C2×C8).343C23 = D8⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).343C2^3 | 128,2012 |
(C2×C8).344C23 = D4×SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).344C2^3 | 128,2013 |
(C2×C8).345C23 = Q16⋊12D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).345C2^3 | 128,2017 |
(C2×C8).346C23 = D4⋊7SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).346C2^3 | 128,2027 |
(C2×C8).347C23 = C42.461C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).347C2^3 | 128,2028 |
(C2×C8).348C23 = D4⋊8SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).348C2^3 | 128,2030 |
(C2×C8).349C23 = C42.466C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).349C2^3 | 128,2033 |
(C2×C8).350C23 = C42.467C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).350C2^3 | 128,2034 |
(C2×C8).351C23 = C42.470C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).351C2^3 | 128,2037 |
(C2×C8).352C23 = C42.42C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).352C2^3 | 128,2039 |
(C2×C8).353C23 = C42.46C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).353C2^3 | 128,2043 |
(C2×C8).354C23 = C42.52C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).354C2^3 | 128,2049 |
(C2×C8).355C23 = C42.56C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).355C2^3 | 128,2053 |
(C2×C8).356C23 = C42.473C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).356C2^3 | 128,2056 |
(C2×C8).357C23 = C42.478C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).357C2^3 | 128,2061 |
(C2×C8).358C23 = C42.480C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).358C2^3 | 128,2063 |
(C2×C8).359C23 = C42.481C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).359C2^3 | 128,2064 |
(C2×C8).360C23 = D4⋊9SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).360C2^3 | 128,2067 |
(C2×C8).361C23 = C42.486C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).361C2^3 | 128,2069 |
(C2×C8).362C23 = C42.490C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).362C2^3 | 128,2073 |
(C2×C8).363C23 = C42.491C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).363C2^3 | 128,2074 |
(C2×C8).364C23 = C42.58C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).364C2^3 | 128,2076 |
(C2×C8).365C23 = C42.59C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).365C2^3 | 128,2077 |
(C2×C8).366C23 = C42.492C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).366C2^3 | 128,2083 |
(C2×C8).367C23 = Q8⋊7SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).367C2^3 | 128,2091 |
(C2×C8).368C23 = C42.501C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).368C2^3 | 128,2092 |
(C2×C8).369C23 = Q8⋊8SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).369C2^3 | 128,2094 |
(C2×C8).370C23 = C42.506C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).370C2^3 | 128,2097 |
(C2×C8).371C23 = C42.512C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).371C2^3 | 128,2103 |
(C2×C8).372C23 = C42.517C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).372C2^3 | 128,2108 |
(C2×C8).373C23 = Q8×SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).373C2^3 | 128,2111 |
(C2×C8).374C23 = SD16⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).374C2^3 | 128,2113 |
(C2×C8).375C23 = D8⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).375C2^3 | 128,2116 |
(C2×C8).376C23 = Q16⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).376C2^3 | 128,2119 |
(C2×C8).377C23 = SD16⋊3Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).377C2^3 | 128,2120 |
(C2×C8).378C23 = Q8⋊9SD16 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).378C2^3 | 128,2124 |
(C2×C8).379C23 = C42.528C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).379C2^3 | 128,2126 |
(C2×C8).380C23 = C42.72C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).380C2^3 | 128,2129 |
(C2×C8).381C23 = C42.75C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).381C2^3 | 128,2132 |
(C2×C8).382C23 = C2×C16⋊C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).382C2^3 | 128,841 |
(C2×C8).383C23 = C8.23C42 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).383C2^3 | 128,842 |
(C2×C8).384C23 = C2×C23.C8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).384C2^3 | 128,846 |
(C2×C8).385C23 = M5(2).19C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).385C2^3 | 128,847 |
(C2×C8).386C23 = C8.5M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).386C2^3 | 128,897 |
(C2×C8).387C23 = C8.19M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).387C2^3 | 128,898 |
(C2×C8).388C23 = C2×(C22×C8)⋊C2 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).388C2^3 | 128,1610 |
(C2×C8).389C23 = C24.73(C2×C4) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).389C2^3 | 128,1611 |
(C2×C8).390C23 = C2×C23.38D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).390C2^3 | 128,1626 |
(C2×C8).391C23 = C2×C23.36D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).391C2^3 | 128,1627 |
(C2×C8).392C23 = C24.98D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).392C2^3 | 128,1628 |
(C2×C8).393C23 = C2×C4⋊M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).393C2^3 | 128,1635 |
(C2×C8).394C23 = C2×C42.6C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).394C2^3 | 128,1636 |
(C2×C8).395C23 = C42.257C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).395C2^3 | 128,1637 |
(C2×C8).396C23 = C2×C42.6C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).396C2^3 | 128,1650 |
(C2×C8).397C23 = C42.677C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).397C2^3 | 128,1652 |
(C2×C8).398C23 = C42.259C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).398C2^3 | 128,1653 |
(C2×C8).399C23 = C42.261C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).399C2^3 | 128,1655 |
(C2×C8).400C23 = C42.678C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).400C2^3 | 128,1657 |
(C2×C8).401C23 = C2×C8⋊9D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).401C2^3 | 128,1659 |
(C2×C8).402C23 = C42.265C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).402C2^3 | 128,1662 |
(C2×C8).403C23 = C42.681C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).403C2^3 | 128,1663 |
(C2×C8).404C23 = C42.266C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).404C2^3 | 128,1664 |
(C2×C8).405C23 = M4(2)⋊22D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).405C2^3 | 128,1665 |
(C2×C8).406C23 = D4×M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).406C2^3 | 128,1666 |
(C2×C8).407C23 = M4(2)⋊23D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).407C2^3 | 128,1667 |
(C2×C8).408C23 = C2×SD16⋊C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).408C2^3 | 128,1672 |
(C2×C8).409C23 = C2×Q16⋊C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).409C2^3 | 128,1673 |
(C2×C8).410C23 = C2×D8⋊C4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).410C2^3 | 128,1674 |
(C2×C8).411C23 = C42.383D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).411C2^3 | 128,1675 |
(C2×C8).412C23 = C4×C8⋊C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).412C2^3 | 128,1676 |
(C2×C8).413C23 = C4×C8.C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).413C2^3 | 128,1677 |
(C2×C8).414C23 = C42.275C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).414C2^3 | 128,1678 |
(C2×C8).415C23 = C42.276C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).415C2^3 | 128,1679 |
(C2×C8).416C23 = C42.277C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).416C2^3 | 128,1680 |
(C2×C8).417C23 = C42.278C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).417C2^3 | 128,1681 |
(C2×C8).418C23 = C42.279C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).418C2^3 | 128,1682 |
(C2×C8).419C23 = C42.280C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).419C2^3 | 128,1683 |
(C2×C8).420C23 = C42.281C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).420C2^3 | 128,1684 |
(C2×C8).421C23 = M4(2).51D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 16 | 4 | (C2xC8).421C2^3 | 128,1688 |
(C2×C8).422C23 = M4(2)○D8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).422C2^3 | 128,1689 |
(C2×C8).423C23 = C2×C8⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).423C2^3 | 128,1691 |
(C2×C8).424C23 = C42.287C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).424C2^3 | 128,1693 |
(C2×C8).425C23 = M4(2)⋊9Q8 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).425C2^3 | 128,1694 |
(C2×C8).426C23 = Q8×M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).426C2^3 | 128,1695 |
(C2×C8).427C23 = C42.290C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).427C2^3 | 128,1697 |
(C2×C8).428C23 = C42.292C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).428C2^3 | 128,1699 |
(C2×C8).429C23 = C42.293C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).429C2^3 | 128,1700 |
(C2×C8).430C23 = D4⋊6M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).430C2^3 | 128,1702 |
(C2×C8).431C23 = C23⋊3M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).431C2^3 | 128,1705 |
(C2×C8).432C23 = D4⋊7M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).432C2^3 | 128,1706 |
(C2×C8).433C23 = C42.693C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).433C2^3 | 128,1707 |
(C2×C8).434C23 = C42.297C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).434C2^3 | 128,1708 |
(C2×C8).435C23 = C42.298C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).435C2^3 | 128,1709 |
(C2×C8).436C23 = C42.299C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).436C2^3 | 128,1710 |
(C2×C8).437C23 = C42.694C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).437C2^3 | 128,1711 |
(C2×C8).438C23 = C42.300C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).438C2^3 | 128,1712 |
(C2×C8).439C23 = C42.301C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).439C2^3 | 128,1713 |
(C2×C8).440C23 = C42.302C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).440C2^3 | 128,1715 |
(C2×C8).441C23 = Q8.4M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).441C2^3 | 128,1716 |
(C2×C8).442C23 = C42.696C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).442C2^3 | 128,1717 |
(C2×C8).443C23 = C42.304C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).443C2^3 | 128,1718 |
(C2×C8).444C23 = C42.305C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).444C2^3 | 128,1719 |
(C2×C8).445C23 = C42.698C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).445C2^3 | 128,1721 |
(C2×C8).446C23 = D4⋊8M4(2) | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).446C2^3 | 128,1722 |
(C2×C8).447C23 = C42.307C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).447C2^3 | 128,1724 |
(C2×C8).448C23 = C42.308C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).448C2^3 | 128,1725 |
(C2×C8).449C23 = C42.309C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).449C2^3 | 128,1726 |
(C2×C8).450C23 = C42.310C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).450C2^3 | 128,1727 |
(C2×C8).451C23 = C2×C42.28C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).451C2^3 | 128,1864 |
(C2×C8).452C23 = C2×C42.29C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).452C2^3 | 128,1865 |
(C2×C8).453C23 = C2×C42.30C22 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 128 | | (C2xC8).453C2^3 | 128,1866 |
(C2×C8).454C23 = C42.239D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).454C2^3 | 128,1867 |
(C2×C8).455C23 = C42.366C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).455C2^3 | 128,1868 |
(C2×C8).456C23 = C42.367C23 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).456C2^3 | 128,1869 |
(C2×C8).457C23 = C42.240D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).457C2^3 | 128,1870 |
(C2×C8).458C23 = C42.241D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).458C2^3 | 128,1871 |
(C2×C8).459C23 = C42.242D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 32 | | (C2xC8).459C2^3 | 128,1872 |
(C2×C8).460C23 = C42.243D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).460C2^3 | 128,1873 |
(C2×C8).461C23 = C42.244D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).461C2^3 | 128,1874 |
(C2×C8).462C23 = C42.259D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).462C2^3 | 128,1914 |
(C2×C8).463C23 = C42.261D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).463C2^3 | 128,1916 |
(C2×C8).464C23 = C42.262D4 | φ: C23/C2 → C22 ⊆ Aut C2×C8 | 64 | | (C2xC8).464C2^3 | 128,1917 |
(C2×C8).465C23 = D4○(C22⋊C8) | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).465C2^3 | 128,1612 |
(C2×C8).466C23 = C22×Q8⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).466C2^3 | 128,1623 |
(C2×C8).467C23 = C2×C23.24D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).467C2^3 | 128,1624 |
(C2×C8).468C23 = 2+ 1+4⋊5C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).468C2^3 | 128,1629 |
(C2×C8).469C23 = 2- 1+4⋊4C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).469C2^3 | 128,1630 |
(C2×C8).470C23 = C22×C4⋊C8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).470C2^3 | 128,1634 |
(C2×C8).471C23 = C42.674C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).471C2^3 | 128,1638 |
(C2×C8).472C23 = C2×C42.12C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).472C2^3 | 128,1649 |
(C2×C8).473C23 = C2×C42.7C22 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).473C2^3 | 128,1651 |
(C2×C8).474C23 = C42.260C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).474C2^3 | 128,1654 |
(C2×C8).475C23 = C42.262C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).475C2^3 | 128,1656 |
(C2×C8).476C23 = D4×C2×C8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).476C2^3 | 128,1658 |
(C2×C8).477C23 = C2×C8⋊6D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).477C2^3 | 128,1660 |
(C2×C8).478C23 = C4×C4○D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).478C2^3 | 128,1671 |
(C2×C8).479C23 = Q8×C2×C8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).479C2^3 | 128,1690 |
(C2×C8).480C23 = C8×C4○D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).480C2^3 | 128,1696 |
(C2×C8).481C23 = C42.691C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).481C2^3 | 128,1704 |
(C2×C8).482C23 = C42.695C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).482C2^3 | 128,1714 |
(C2×C8).483C23 = C42.697C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).483C2^3 | 128,1720 |
(C2×C8).484C23 = Q8⋊7M4(2) | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).484C2^3 | 128,1723 |
(C2×C8).485C23 = C2×C8⋊8D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).485C2^3 | 128,1779 |
(C2×C8).486C23 = C2×C8⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).486C2^3 | 128,1780 |
(C2×C8).487C23 = C2×C8.18D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).487C2^3 | 128,1781 |
(C2×C8).488C23 = C2×C4.4D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).488C2^3 | 128,1860 |
(C2×C8).489C23 = C2×C4.SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).489C2^3 | 128,1861 |
(C2×C8).490C23 = C2×C42.78C22 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).490C2^3 | 128,1862 |
(C2×C8).491C23 = C42.355D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).491C2^3 | 128,1863 |
(C2×C8).492C23 = C2×C2.D16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).492C2^3 | 128,868 |
(C2×C8).493C23 = C2×C2.Q32 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).493C2^3 | 128,869 |
(C2×C8).494C23 = C23.24D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).494C2^3 | 128,870 |
(C2×C8).495C23 = C23.39D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).495C2^3 | 128,871 |
(C2×C8).496C23 = C23.40D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).496C2^3 | 128,872 |
(C2×C8).497C23 = C23.41D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).497C2^3 | 128,873 |
(C2×C8).498C23 = C2×C16⋊3C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).498C2^3 | 128,888 |
(C2×C8).499C23 = C2×C16⋊4C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).499C2^3 | 128,889 |
(C2×C8).500C23 = C23.25D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).500C2^3 | 128,890 |
(C2×C8).501C23 = M5(2)⋊1C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).501C2^3 | 128,891 |
(C2×C8).502C23 = C4×D16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).502C2^3 | 128,904 |
(C2×C8).503C23 = C4×SD32 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).503C2^3 | 128,905 |
(C2×C8).504C23 = C4×Q32 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).504C2^3 | 128,906 |
(C2×C8).505C23 = SD32⋊3C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).505C2^3 | 128,907 |
(C2×C8).506C23 = Q32⋊4C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).506C2^3 | 128,908 |
(C2×C8).507C23 = D16⋊4C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).507C2^3 | 128,909 |
(C2×C8).508C23 = D8⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).508C2^3 | 128,916 |
(C2×C8).509C23 = Q16⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).509C2^3 | 128,917 |
(C2×C8).510C23 = D8⋊8D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).510C2^3 | 128,918 |
(C2×C8).511C23 = D8.9D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).511C2^3 | 128,919 |
(C2×C8).512C23 = Q16.8D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).512C2^3 | 128,920 |
(C2×C8).513C23 = D8.10D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).513C2^3 | 128,921 |
(C2×C8).514C23 = D8⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).514C2^3 | 128,938 |
(C2×C8).515C23 = Q16⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).515C2^3 | 128,939 |
(C2×C8).516C23 = D8.4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).516C2^3 | 128,940 |
(C2×C8).517C23 = Q16.4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).517C2^3 | 128,941 |
(C2×C8).518C23 = D8.5D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).518C2^3 | 128,942 |
(C2×C8).519C23 = Q16.5D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).519C2^3 | 128,943 |
(C2×C8).520C23 = C16⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).520C2^3 | 128,947 |
(C2×C8).521C23 = C16.19D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).521C2^3 | 128,948 |
(C2×C8).522C23 = C16⋊8D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).522C2^3 | 128,949 |
(C2×C8).523C23 = C16⋊D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).523C2^3 | 128,950 |
(C2×C8).524C23 = C16.D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).524C2^3 | 128,951 |
(C2×C8).525C23 = C16⋊2D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).525C2^3 | 128,952 |
(C2×C8).526C23 = D8⋊1Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).526C2^3 | 128,956 |
(C2×C8).527C23 = Q16⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).527C2^3 | 128,957 |
(C2×C8).528C23 = D8⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).528C2^3 | 128,958 |
(C2×C8).529C23 = C4.Q32 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).529C2^3 | 128,959 |
(C2×C8).530C23 = D8.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).530C2^3 | 128,960 |
(C2×C8).531C23 = Q16.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).531C2^3 | 128,961 |
(C2×C8).532C23 = C22.D16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).532C2^3 | 128,964 |
(C2×C8).533C23 = C23.49D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).533C2^3 | 128,965 |
(C2×C8).534C23 = C23.19D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).534C2^3 | 128,966 |
(C2×C8).535C23 = C23.50D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).535C2^3 | 128,967 |
(C2×C8).536C23 = C23.51D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).536C2^3 | 128,968 |
(C2×C8).537C23 = C23.20D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).537C2^3 | 128,969 |
(C2×C8).538C23 = C4.4D16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).538C2^3 | 128,972 |
(C2×C8).539C23 = C4.SD32 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).539C2^3 | 128,973 |
(C2×C8).540C23 = C8.22SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).540C2^3 | 128,974 |
(C2×C8).541C23 = C8.12SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).541C2^3 | 128,975 |
(C2×C8).542C23 = C8.13SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).542C2^3 | 128,976 |
(C2×C8).543C23 = C8.14SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).543C2^3 | 128,977 |
(C2×C8).544C23 = C4⋊D16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).544C2^3 | 128,978 |
(C2×C8).545C23 = C4⋊Q32 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).545C2^3 | 128,979 |
(C2×C8).546C23 = C16⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).546C2^3 | 128,980 |
(C2×C8).547C23 = C8.21D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).547C2^3 | 128,981 |
(C2×C8).548C23 = C16⋊3D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).548C2^3 | 128,982 |
(C2×C8).549C23 = C8.7D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).549C2^3 | 128,983 |
(C2×C8).550C23 = C16⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).550C2^3 | 128,984 |
(C2×C8).551C23 = C16.5Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).551C2^3 | 128,985 |
(C2×C8).552C23 = C16⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).552C2^3 | 128,986 |
(C2×C8).553C23 = C16⋊Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).553C2^3 | 128,987 |
(C2×C8).554C23 = C22×C2.D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).554C2^3 | 128,1640 |
(C2×C8).555C23 = C4○D4.8Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).555C2^3 | 128,1645 |
(C2×C8).556C23 = C2×C4×D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).556C2^3 | 128,1668 |
(C2×C8).557C23 = C2×C4×Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).557C2^3 | 128,1670 |
(C2×C8).558C23 = C2×C8⋊4D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).558C2^3 | 128,1876 |
(C2×C8).559C23 = C2×C4⋊Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).559C2^3 | 128,1877 |
(C2×C8).560C23 = M4(2)⋊11D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).560C2^3 | 128,1887 |
(C2×C8).561C23 = M4(2).20D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).561C2^3 | 128,1888 |
(C2×C8).562C23 = C2×C8.5Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).562C2^3 | 128,1890 |
(C2×C8).563C23 = C2×C8⋊2Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).563C2^3 | 128,1891 |
(C2×C8).564C23 = C42.366D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).564C2^3 | 128,1901 |
(C2×C8).565C23 = C42.367D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).565C2^3 | 128,1902 |
(C2×C8).566C23 = C42.387C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).566C2^3 | 128,1907 |
(C2×C8).567C23 = C42.388C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).567C2^3 | 128,1908 |
(C2×C8).568C23 = C42.389C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).568C2^3 | 128,1909 |
(C2×C8).569C23 = D8⋊13D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).569C2^3 | 128,2015 |
(C2×C8).570C23 = Q16⋊13D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).570C2^3 | 128,2019 |
(C2×C8).571C23 = C22×D16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).571C2^3 | 128,2140 |
(C2×C8).572C23 = C22×SD32 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).572C2^3 | 128,2141 |
(C2×C8).573C23 = C22×Q32 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).573C2^3 | 128,2142 |
(C2×C8).574C23 = C23×Q16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).574C2^3 | 128,2308 |
(C2×C8).575C23 = C2×Q8○D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).575C2^3 | 128,2315 |
(C2×C8).576C23 = C2×D8.C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).576C2^3 | 128,874 |
(C2×C8).577C23 = C23.20SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).577C2^3 | 128,875 |
(C2×C8).578C23 = C2×C8.4Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).578C2^3 | 128,892 |
(C2×C8).579C23 = M5(2).1C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).579C2^3 | 128,893 |
(C2×C8).580C23 = C8○D16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).580C2^3 | 128,910 |
(C2×C8).581C23 = D16⋊5C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).581C2^3 | 128,911 |
(C2×C8).582C23 = C22×C8.C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).582C2^3 | 128,1646 |
(C2×C8).583C23 = M4(2).29C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).583C2^3 | 128,1648 |
(C2×C8).584C23 = C2×C8○D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).584C2^3 | 128,1685 |
(C2×C8).585C23 = C2×C4○D16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).585C2^3 | 128,2143 |
(C2×C8).586C23 = C8.C24 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).586C2^3 | 128,2316 |
(C2×C8).587C23 = C22×C4.Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).587C2^3 | 128,1639 |
(C2×C8).588C23 = C2×C23.25D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).588C2^3 | 128,1641 |
(C2×C8).589C23 = C4○D4.7Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).589C2^3 | 128,1644 |
(C2×C8).590C23 = C2×C4×SD16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).590C2^3 | 128,1669 |
(C2×C8).591C23 = C24.144D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).591C2^3 | 128,1782 |
(C2×C8).592C23 = C2×C8⋊5D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).592C2^3 | 128,1875 |
(C2×C8).593C23 = C2×C8.12D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).593C2^3 | 128,1878 |
(C2×C8).594C23 = C42.360D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).594C2^3 | 128,1879 |
(C2×C8).595C23 = M4(2)⋊10D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).595C2^3 | 128,1886 |
(C2×C8).596C23 = C2×C8⋊3Q8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).596C2^3 | 128,1889 |
(C2×C8).597C23 = C42.364D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).597C2^3 | 128,1892 |
(C2×C8).598C23 = C42.365D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).598C2^3 | 128,1899 |
(C2×C8).599C23 = C42.308D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).599C2^3 | 128,1900 |
(C2×C8).600C23 = C42.385C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).600C2^3 | 128,1905 |
(C2×C8).601C23 = C42.386C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).601C2^3 | 128,1906 |
(C2×C8).602C23 = SD16⋊11D4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).602C2^3 | 128,2016 |
(C2×C8).603C23 = C2×D4.C8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).603C2^3 | 128,848 |
(C2×C8).604C23 = M5(2)⋊12C22 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).604C2^3 | 128,849 |
(C2×C8).605C23 = C2×C8.C8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).605C2^3 | 128,884 |
(C2×C8).606C23 = M4(2).1C8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).606C2^3 | 128,885 |
(C2×C8).607C23 = C16○D8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 2 | (C2xC8).607C2^3 | 128,902 |
(C2×C8).608C23 = D8.C8 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).608C2^3 | 128,903 |
(C2×C8).609C23 = C22×C8⋊C4 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 128 | | (C2xC8).609C2^3 | 128,1602 |
(C2×C8).610C23 = C2×C4×M4(2) | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).610C2^3 | 128,1603 |
(C2×C8).611C23 = M4(2)○2M4(2) | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | | (C2xC8).611C2^3 | 128,1605 |
(C2×C8).612C23 = D4.5C42 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).612C2^3 | 128,1607 |
(C2×C8).613C23 = C42.283C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).613C2^3 | 128,1687 |
(C2×C8).614C23 = C42.294C23 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).614C2^3 | 128,1701 |
(C2×C8).615C23 = Q8⋊6M4(2) | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).615C2^3 | 128,1703 |
(C2×C8).616C23 = C22×M5(2) | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).616C2^3 | 128,2137 |
(C2×C8).617C23 = C2×D4○C16 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 64 | | (C2xC8).617C2^3 | 128,2138 |
(C2×C8).618C23 = Q8○M5(2) | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).618C2^3 | 128,2139 |
(C2×C8).619C23 = C4.22C25 | φ: C23/C22 → C2 ⊆ Aut C2×C8 | 32 | 4 | (C2xC8).619C2^3 | 128,2305 |
(C2×C8).620C23 = C2×C16⋊5C4 | central extension (φ=1) | 128 | | (C2xC8).620C2^3 | 128,838 |
(C2×C8).621C23 = C4×M5(2) | central extension (φ=1) | 64 | | (C2xC8).621C2^3 | 128,839 |
(C2×C8).622C23 = C16○2M5(2) | central extension (φ=1) | 64 | | (C2xC8).622C2^3 | 128,840 |
(C2×C8).623C23 = C2×C22⋊C16 | central extension (φ=1) | 64 | | (C2xC8).623C2^3 | 128,843 |
(C2×C8).624C23 = C24.5C8 | central extension (φ=1) | 32 | | (C2xC8).624C2^3 | 128,844 |
(C2×C8).625C23 = (C2×D4).5C8 | central extension (φ=1) | 64 | | (C2xC8).625C2^3 | 128,845 |
(C2×C8).626C23 = C2×C4⋊C16 | central extension (φ=1) | 128 | | (C2xC8).626C2^3 | 128,881 |
(C2×C8).627C23 = C4⋊M5(2) | central extension (φ=1) | 64 | | (C2xC8).627C2^3 | 128,882 |
(C2×C8).628C23 = C4⋊C4.7C8 | central extension (φ=1) | 64 | | (C2xC8).628C2^3 | 128,883 |
(C2×C8).629C23 = C42.13C8 | central extension (φ=1) | 64 | | (C2xC8).629C2^3 | 128,894 |
(C2×C8).630C23 = C42.6C8 | central extension (φ=1) | 64 | | (C2xC8).630C2^3 | 128,895 |
(C2×C8).631C23 = C8.12M4(2) | central extension (φ=1) | 64 | | (C2xC8).631C2^3 | 128,896 |
(C2×C8).632C23 = D4×C16 | central extension (φ=1) | 64 | | (C2xC8).632C2^3 | 128,899 |
(C2×C8).633C23 = C16⋊9D4 | central extension (φ=1) | 64 | | (C2xC8).633C2^3 | 128,900 |
(C2×C8).634C23 = C16⋊6D4 | central extension (φ=1) | 64 | | (C2xC8).634C2^3 | 128,901 |
(C2×C8).635C23 = Q8×C16 | central extension (φ=1) | 128 | | (C2xC8).635C2^3 | 128,914 |
(C2×C8).636C23 = C16⋊4Q8 | central extension (φ=1) | 128 | | (C2xC8).636C2^3 | 128,915 |
(C2×C8).637C23 = C2×C8○2M4(2) | central extension (φ=1) | 64 | | (C2xC8).637C2^3 | 128,1604 |
(C2×C8).638C23 = C4×C8○D4 | central extension (φ=1) | 64 | | (C2xC8).638C2^3 | 128,1606 |
(C2×C8).639C23 = C42.264C23 | central extension (φ=1) | 32 | | (C2xC8).639C2^3 | 128,1661 |
(C2×C8).640C23 = C42.286C23 | central extension (φ=1) | 64 | | (C2xC8).640C2^3 | 128,1692 |
(C2×C8).641C23 = C42.291C23 | central extension (φ=1) | 64 | | (C2xC8).641C2^3 | 128,1698 |